
UNIT II 

Client/Server Communication 

Java Socket programming is used for communication between the applications 

running on different JRE. 

Java Socket programming can be connection-oriented or connection-less. 

Socket and Server Socket classes are used for connection-oriented socket 

programming and Datagram Socket and Datagram Packet classes are used for 

connection-less socket programming. 

The client in socket programming must know two information: 

1. IP Address of Server, and 

2. Port number. 

Here, we are going to make one-way client and server communication. In this 

application, client sends a message to the server, server reads the message and prints 

it. Here, two classes are being used: Socket and Server Socket. The Socket class is used 

to communicate client and server. Through this class, we can read and write message. 

The Server Socket class is used at server-side. The accept() method of Server Socket 

class blocks the console until the client is connected. After the successful connection 

of client, it returns the instance of Socket at server-side. 



 

 

Socket class 

A socket is simply an endpoint for communications between the machines. The Socket 

class can be used to create a socket. 

Important methods 

Method Description 

1) public InputStream getInputStream() returns the InputStream attached with this 

socket. 

2) public OutputStream 

getOutputStream() 

returns the OutputStream attached with this 

socket. 



3) public synchronized void close() closes this socket 

 

Server Socket class 

The Server Socket class can be used to create a server socket. This object is used to 

establish communication with the clients. 

Important methods 

Method Description 

1) public Socket accept() returns the socket and establish a 

connection between server and client. 

2) public synchronized void close() closes the server socket. 

 

Java Socket Programming 

Creating Server: 

To create the server application, we need to create the instance of Server Socket class. 

Here, we are using 6666 port number for the communication between the client and 

server. You may also choose any other port number. The accept() method waits for 

the client. If clients connects with the given port number, it returns an instance of 

Socket. 

 

 

 

 

 

https://www.javatpoint.com/socket-programming
https://www.javatpoint.com/socket-programming
https://www.javatpoint.com/socket-programming
https://www.javatpoint.com/socket-programming
https://www.javatpoint.com/socket-programming
https://www.javatpoint.com/socket-programming


1. ServerSocket ss=new ServerSocket(6666);   

2. Socket s=ss.accept();//establishes connection and waits for the client    

Creating Client: 

To create the client application, we need to create the instance of Socket class. Here, 

we need to pass the IP address or hostname of the Server and a port number. Here, 

we are using "localhost" because our server is running on same system. 

 

 

1. Socket s=new Socket("localhost",6666);   

Let's see a simple of Java socket programming where client sends a text and server 

receives and prints it. 

File: MyServer.java 

 

 

1. import java.io.*;   

2. import java.net.*;   

3. public class MyServer {   

4. public static void main(String[] args){   

5. try{   

6. ServerSocket ss=new ServerSocket(6666);   

7. Socket s=ss.accept();//establishes connection    

8. DataInputStream dis=new DataInputStream(s.getInputStream());   

9. String  str=(String)dis.readUTF();   

10. System.out.println("message= "+str);   

11. ss.close();   

12. }catch(Exception e){System.out.println(e);}   

13. }   

14. }   

15.  



File: MyClient.java 

 

 

1. import java.io.*;   

2. import java.net.*;   

3. public class MyClient {   

4. public static void main(String[] args) {   

5. try{       

6. Socket s=new Socket("localhost",6666);   

7. DataOutputStream dout=new DataOutputStream(s.getOutputStream());   

8. dout.writeUTF("Hello Server");   

9. dout.flush();   

10. dout.close();   

11. s.close();   

12. }catch(Exception e){System.out.println(e);}   

13. }   

14. }   

 

HostsIdentification 

Every computer on the Internet is identified by a unique, 4-byte IP address . This is 

typically written in 

dotted quad format like 128.250.25.158 where each byte is an unsigned value 

between 0 and 255. This 

representation is clearly not user-friendly because it does not tell us anything about 

the content and then it is 

difficult to remember. Hence, IP addresses are mapped to names 

like www.musiclamhe.com or www.Dicoor.com, which are easier to remember. 

Internet supports name servers that translate these names to IP addresses. 

 

Service Ports 

http://www.musiclamhe.com/
http://www.dicoor.com/


Ports are logical abstractions that allow one host to communicate simultaneously 

with many other hosts.  

Many services run on well-known ports. For example, http tends to run on port 80. 

 

              In general, each computer only has one Internet address. However, computers 

often need to communicate and provide more than one type of service or to talk to 

multiple hosts/computers at a time. 

 For example, there may be multiple ftp sessions, web connections, and chat programs 

all running at the same time. To distinguish these services, a concept of port's, a logical 

access point, represented by a 16-bit integer number is used.  

That means, each service offered by a computer is uniquely identified by a port 

number. Each Internet packet contains both the destination host address and the port 

number on that host to which the message/request has to be delivered. The host 

computer dispatches the packets it receives to programs by looking at the port 

numbers specified within the packets. That is, IP address can be thought of as a house 

address when a letter is sent via post/snail mail and port number as the name of a 

specific individual to whom the letter has to be delivered. 

Choosing the Host and the Port 

• You must at least specify the remote host and port to connect to. 

• The host may be specified as either a string like "utopia.poly.edu" or as 

an InetAddress object. 

• The port should be an int between 1 and 65535. 

Socket webMetalab = new Socket("musiclamhe.com", 80); 

• You cannot just connect to any port on any host. The remote host must actually 

be listening for connections on that port. 

• You can use the constructors to determine which ports on a host are listening 

for connections. 

 

 

 

http://musiclamhe.com/


SOCKET PROGRAMMING AND JAVA.NET CLASS 

The term network programming refers to writing programs that execute across multiple 

devices (computers), in which the devices are all connected to each other using a 

network. 

The java.net package of the J2SE APIs contains a collection of classes and interfaces 

that provide the low-level communication details, allowing you to write programs 

that focus on solving the problem at hand. 

The java.net package provides support for the two common network protocols − 

• TCP − TCP stands for Transmission Control Protocol, which allows for 

reliable communication between two applications. TCP is typically used 

over the Internet Protocol, which is referred to as TCP/IP. 

• UDP − UDP stands for User Datagram Protocol, a connection-less 

protocol that allows for packets of data to be transmitted between 

applications. 

This chapter gives a good understanding on the following two subjects − 

• Socket Programming − This is the most widely used concept in 

Networking and it has been explained in very detail. 

• URL Processing − This would be covered separately. Click here to learn 

about URL Processing in Java language. 

Socket Programming 

Sockets provide the communication mechanism between two computers using TCP. 

A client program creates a socket on its end of the communication and attempts to 

connect that socket to a server. 

When the connection is made, the server creates a socket object on its end of the 

communication. The client and the server can now communicate by writing to and 

reading from the socket. 

https://www.tutorialspoint.com/java/java_url_processing.htm


The java.net.Socket class represents a socket, and the java.net.ServerSocket class 

provides a mechanism for the server program to listen for clients and establish 

connections with them. 

The following steps occur when establishing a TCP connection between two 

computers using sockets − 

• The server instantiates a ServerSocket object, denoting which port 

number communication is to occur on. 

• The server invokes the accept() method of the ServerSocket class. This 

method waits until a client connects to the server on the given port. 

• After the server is waiting, a client instantiates a Socket object, specifying 

the server name and the port number to connect to. 

• The constructor of the Socket class attempts to connect the client to the 

specified server and the port number. If communication is established, 

the client now has a Socket object capable of communicating with the 

server. 

• On the server side, the accept() method returns a reference to a new 

socket on the server that is connected to the client's socket. 

After the connections are established, communication can occur using I/O streams. 

Each socket has both an OutputStream and an InputStream. The client's OutputStream 

is connected to the server's InputStream, and the client's InputStream is connected to 

the server's OutputStream. 

TCP is a two-way communication protocol, hence data can be sent across both streams 

at the same time. Following are the useful classes providing complete set of methods 

to implement sockets. 

ServerSocket Class Methods 

The java.net.ServerSocket class is used by server applications to obtain a port and 

listen for client requests. 

The ServerSocket class has four constructors − 



Sr.No. Method & Description 

1 

public ServerSocket(int port) throws IOException 

Attempts to create a server socket bound to the specified port. An exception 

occurs if the port is already bound by another application. 

2 

public ServerSocket(int port, int backlog) throws IOException 

Similar to the previous constructor, the backlog parameter specifies how many 

incoming clients to store in a wait queue. 

3 

public ServerSocket(int port, int backlog, InetAddress address) throws 

IOException 

Similar to the previous constructor, the InetAddress parameter specifies the local 

IP address to bind to. The InetAddress is used for servers that may have multiple 

IP addresses, allowing the server to specify which of its IP addresses to accept 

client requests on. 

4 

public ServerSocket() throws IOException 

Creates an unbound server socket. When using this constructor, use the bind() 

method when you are ready to bind the server socket. 

If the ServerSocket constructor does not throw an exception, it means that your 

application has successfully bound to the specified port and is ready for client 

requests. 

Following are some of the common methods of the ServerSocket class − 

Sr.No. Method & Description 



1 

public int getLocalPort() 

Returns the port that the server socket is listening on. This method is useful if you 

passed in 0 as the port number in a constructor and let the server find a port for 

you. 

2 

public Socket accept() throws IOException 

Waits for an incoming client. This method blocks until either a client connects to 

the server on the specified port or the socket times out, assuming that the time-

out value has been set using the setSoTimeout() method. Otherwise, this method 

blocks indefinitely. 

3 

public void setSoTimeout(int timeout) 

Sets the time-out value for how long the server socket waits for a client during 

the accept(). 

4 

public void bind(SocketAddress host, int backlog) 

Binds the socket to the specified server and port in the SocketAddress object. Use 

this method if you have instantiated the ServerSocket using the no-argument 

constructor. 

When the ServerSocket invokes accept(), the method does not return until a client 

connects. After a client does connect, the ServerSocket creates a new Socket on an 

unspecified port and returns a reference to this new Socket. A TCP connection now 

exists between the client and the server, and communication can begin. 

Socket Class Methods 

The java.net.Socket class represents the socket that both the client and the server use 

to communicate with each other. The client obtains a Socket object by instantiating 



one, whereas the server obtains a Socket object from the return value of the accept() 

method. 

The Socket class has five constructors that a client uses to connect to a server − 

Sr.No. Method & Description 

1 

public Socket(String host, int port) throws UnknownHostException, 

IOException. 

This method attempts to connect to the specified server at the specified port. 

If this constructor does not throw an exception, the connection is successful 

and the client is connected to the server. 

2 

public Socket(InetAddress host, int port) throws IOException 

This method is identical to the previous constructor, except that the host is 

denoted by an InetAddress object. 

3 

public Socket(String host, int port, InetAddress localAddress, int localPort) 

throws IOException. 

Connects to the specified host and port, creating a socket on the local host at 

the specified address and port. 

4 

public Socket(InetAddress host, int port, InetAddress localAddress, int 

localPort) throws IOException. 

This method is identical to the previous constructor, except that the host is 

denoted by an InetAddress object instead of a String. 

5 
public Socket() 



Creates an unconnected socket. Use the connect() method to connect this 

socket to a server. 

When the Socket constructor returns, it does not simply instantiate a Socket object but 

it actually attempts to connect to the specified server and port. 

Some methods of interest in the Socket class are listed here. Notice that both the client 

and the server have a Socket object, so these methods can be invoked by both the client 

and the server. 

Sr.No. Method & Description 

1 

public void connect(SocketAddress host, int timeout) throws IOException 

This method connects the socket to the specified host. This method is needed 

only when you instantiate the Socket using the no-argument constructor. 

2 

public InetAddress getInetAddress() 

This method returns the address of the other computer that this socket is 

connected to. 

3 

public int getPort() 

Returns the port the socket is bound to on the remote machine. 

4 

public int getLocalPort() 

Returns the port the socket is bound to on the local machine. 

5 

public SocketAddress getRemoteSocketAddress() 

Returns the address of the remote socket. 



6 

public InputStream getInputStream() throws IOException 

Returns the input stream of the socket. The input stream is connected to the 

output stream of the remote socket. 

7 

public OutputStream getOutputStream() throws IOException 

Returns the output stream of the socket. The output stream is connected to the 

input stream of the remote socket. 

8 

public void close() throws IOException 

Closes the socket, which makes this Socket object no longer capable of 

connecting again to any server. 

InetAddress Class Methods 

This class represents an Internet Protocol (IP) address. Here are following usefull 

methods which you would need while doing socket programming − 

Sr.No. Method & Description 

1 

static InetAddress getByAddress(byte[] addr) 

Returns an InetAddress object given the raw IP address. 

2 

static InetAddress getByAddress(String host, byte[] addr) 

Creates an InetAddress based on the provided host name and IP address. 

3 

static InetAddress getByName(String host) 

Determines the IP address of a host, given the host's name. 



4 

String getHostAddress() 

Returns the IP address string in textual presentation. 

5 

String getHostName() 

Gets the host name for this IP address. 

6 

static InetAddress InetAddress getLocalHost() 

Returns the local host. 

7 

String toString() 

Converts this IP address to a String. 

Socket Client Example 

The following GreetingClient is a client program that connects to a server by using a 

socket and sends a greeting, and then waits for a response. 

Example 

// File Name GreetingClient.java 

import java.net.*; 

import java.io.*; 

 

public class GreetingClient { 

 

   public static void main(String [] args) { 

      String serverName = args[0]; 

      int port = Integer.parseInt(args[1]); 

      try { 

         System.out.println("Connecting to " + serverName + " on port " + port); 



         Socket client = new Socket(serverName, port); 

          

         System.out.println("Just connected to " + client.getRemoteSocketAddress()); 

         OutputStream outToServer = client.getOutputStream(); 

         DataOutputStream out = new DataOutputStream(outToServer); 

          

         out.writeUTF("Hello from " + client.getLocalSocketAddress()); 

         InputStream inFromServer = client.getInputStream(); 

         DataInputStream in = new DataInputStream(inFromServer); 

          

         System.out.println("Server says " + in.readUTF()); 

         client.close(); 

      } catch (IOException e) { 

         e.printStackTrace(); 

      } 

   } 

} 

Socket Server Example 

The following GreetingServer program is an example of a server application that uses 

the Socket class to listen for clients on a port number specified by a command-line 

argument − 

Example 

// File Name GreetingServer.java 

import java.net.*; 

import java.io.*; 

 

public class GreetingServer extends Thread { 

   private ServerSocket serverSocket; 

    



   public GreetingServer(int port) throws IOException { 

      serverSocket = new ServerSocket(port); 

      serverSocket.setSoTimeout(10000); 

   } 

 

   public void run() { 

      while(true) { 

         try { 

            System.out.println("Waiting for client on port " +  

               serverSocket.getLocalPort() + "..."); 

            Socket server = serverSocket.accept(); 

             

            System.out.println("Just connected to " + server.getRemoteSocketAddress()); 

            DataInputStream in = new DataInputStream(server.getInputStream()); 

             

            System.out.println(in.readUTF()); 

            DataOutputStream out = new DataOutputStream(server.getOutputStream()); 

            out.writeUTF("Thank you for connecting to " + server.getLocalSocketAddress() 

               + "\nGoodbye!"); 

            server.close(); 

             

         } catch (SocketTimeoutException s) { 

            System.out.println("Socket timed out!"); 

            break; 

         } catch (IOException e) { 

            e.printStackTrace(); 

            break; 

         } 

      } 

   } 

    



   public static void main(String [] args) { 

      int port = Integer.parseInt(args[0]); 

      try { 

         Thread t = new GreetingServer(port); 

         t.start(); 

      } catch (IOException e) { 

         e.printStackTrace(); 

      } 

   } 

} 

Compile the client and the server and then start the server as follows − 

$ java GreetingServer 6066 

Waiting for client on port 6066... 

Check the client program as follows − 

Output 

$ java GreetingClient localhost 6066 

Connecting to localhost on port 6066 

Just connected to localhost/127.0.0.1:6066 

Server says Thank you for connecting to /127.0.0.1:6066 

Goodbye! 

 

 

UDP SOCKET PROGRAMMING 

Java DatagramSocket and DatagramPacket classes are used for connection-less socket 

programming using the UDP instead of TCP. 

 

 



Datagram 

Datagrams are collection of information sent from one device to another device via 

the established network. When the datagram is sent to the targeted device, there is no 

assurance that it will reach to the target device safely and completely. It may get 

damaged or lost in between. Likewise, the receiving device also never know if the 

datagram received is damaged or not. The UDP protocol is used to implement the 

datagrams in Java. 

Java DatagramSocket class 

Java DatagramSocket class represents a connection-less socket for sending and 

receiving datagram packets. It is a mechanism used for transmitting datagram packets 

over network.` 

A datagram is basically an information but there is no guarantee of its content, arrival 

or arrival time. 

Commonly used Constructors of DatagramSocket class 

o DatagramSocket() throws SocketEeption: it creates a datagram socket and 

binds it with the available Port Number on the localhost machine. 

o DatagramSocket(int port) throws SocketEeption: it creates a datagram socket 

and binds it with the given Port Number. 

o DatagramSocket(int port, InetAddress address) throws SocketEeption: it 

creates a datagram socket and binds it with the specified port number and host 

address. 

 

 

 

 



Java DatagramSocket Class 

Method Description 

void bind(SocketAddress 

addr) 

It binds the DatagramSocket to a specific address and port. 

void close() It closes the datagram socket. 

void connect(InetAddress 

address, int port) 

It connects the socket to a remote address for the socket. 

void disconnect() It disconnects the socket. 

boolean getBroadcast() It tests if SO_BROADCAST is enabled. 

DatagramChannel 

getChannel() 

It returns the unique DatagramChannel object associated 

with the datagram socket. 

InetAddress getInetAddress() It returns the address to where the socket is connected. 

InetAddress 

getLocalAddress() 

It gets the local address to which the socket is connected. 

int getLocalPort() It returns the port number on the local host to which the 

socket is bound. 

SocketAddress 

getLocalSocketAddress() 

It returns the address of the endpoint the socket is bound to. 

int getPort() It returns the port number to which the socket is connected. 

int getReceiverBufferSize() It gets the value of the SO_RCVBUF option for this 

DatagramSocket that is the buffer size used by the platform 

for input on the DatagramSocket. 



boolean isClosed() It returns the status of socket i.e. closed or not. 

boolean isConnected() It returns the connection state of the socket. 

void send(DatagramPacket p) It sends the datagram packet from the socket. 

void receive(DatagramPacket 

p) 

It receives the datagram packet from the socket. 

 

Java DatagramPacket Class 

Java DatagramPacket is a message that can be sent or received. It is a data container. 

If you send multiple packet, it may arrive in any order. Additionally, packet delivery 

is not guaranteed. 

Commonly used Constructors of DatagramPacket class 

o DatagramPacket(byte[] barr, int length): it creates a datagram packet. This 

constructor is used to receive the packets. 

o DatagramPacket(byte[] barr, int length, InetAddress address, int port): it 

creates a datagram packet. This constructor is used to send the packets. 

Java DatagramPacket Class Methods 

Method Description 

1) InetAddress getAddress() It returns the IP address of the machine 

to which the datagram is being sent or 

from which the datagram was received. 

2) byte[] getData() It returns the data buffer. 



3) int getLength() It returns the length of the data to be 

sent or the length of the data received. 

4) int getOffset() It returns the offset of the data to be sent 

or the offset of the data received. 

5) int getPort() It returns the port number on the 

remote host to which the datagram is 

being sent or from which the datagram 

was received. 

6) SocketAddress getSocketAddress() It gets the SocketAddress (IP address + 

port number) of the remote host that the 

packet is being sent to or is coming 

from. 

7) void setAddress(InetAddress iaddr) It sets the IP address of the machine to 

which the datagram is being sent. 

8) void setData(byte[] buff) It sets the data buffer for the packet. 

9) void setLength(int length) It sets the length of the packet. 

10) void setPort(int iport) It sets the port number on the remote 

host to which the datagram is being 

sent. 

11) void setSocketAddress(SocketAddress 

addr) 

It sets the SocketAddress (IP address + 

port number) of the remote host to 

which the datagram is being sent. 

 

 



Example of Sending DatagramPacket by DatagramSocket 

1. //DSender.java   

2. import java.net.*;   

3. public class DSender{   

4.   public static void main(String[] args) throws Exception {   

5.     DatagramSocket ds = new DatagramSocket();   

6.     String str = "Welcome java";   

7.     InetAddress ip = InetAddress.getByName("127.0.0.1");   

8.       

9.     DatagramPacket dp = new DatagramPacket(str.getBytes(), str.length(), ip, 3

000);   

10.     ds.send(dp);   

11.     ds.close();   

12.   }   

13. }   

Output: 

 

Example of Receiving DatagramPacket by DatagramSocket 

 

https://www.javatpoint.com/DatagramSocket-and-DatagramPacket


 

 

 

1. //DReceiver.java   

2. import java.net.*;   

3. public class DReceiver{   

4.   public static void main(String[] args) throws Exception {   

5.     DatagramSocket ds = new DatagramSocket(3000);   

6.     byte[] buf = new byte[1024];   

7.     DatagramPacket dp = new DatagramPacket(buf, 1024);   

8.     ds.receive(dp);   

9.     String str = new String(dp.getData(), 0, dp.getLength());   

10.     System.out.println(str);   

11.     ds.close();   

12.   }   

13. }   

Output: 

 

 

 

https://www.javatpoint.com/DatagramSocket-and-DatagramPacket
https://www.javatpoint.com/DatagramSocket-and-DatagramPacket
https://www.javatpoint.com/DatagramSocket-and-DatagramPacket
https://www.javatpoint.com/DatagramSocket-and-DatagramPacket


URL ENCODING 

URL stands for Uniform Resource Locator and represents a resource on the 

World Wide Web, such as a Web page or FTP directory. 

This section shows you how to write Java programs that communicate with a URL. A 

URL can be broken down into parts, as follows − 

protocol://host:port/path?query#ref 

Examples of protocols include HTTP, HTTPS, FTP, and File. The path is also referred 

to as the filename, and the host is also called the authority. 

The following is a URL to a web page whose protocol is HTTP − 

https://www.amrood.com/index.htm?language=en#j2se 

Notice that this URL does not specify a port, in which case the default port for the 

protocol is used. With HTTP, the default port is 80. 

Constructors 

The java.net.URL class represents a URL and has a complete set of methods to 

manipulate URL in Java. 

The URL class has several constructors for creating URLs, including the following − 

Sr.No. Constructors & Description 

1 public URL(String protocol, String host, int port, String file) throws 

MalformedURLException 

Creates a URL by putting together the given parts. 

2 public URL(String protocol, String host, String file) throws 

MalformedURLException 



Identical to the previous constructor, except that the default port for the 

given protocol is used. 

3 public URL(String url) throws MalformedURLException 

Creates a URL from the given String. 

4 public URL(URL context, String url) throws 

MalformedURLException 

Creates a URL by parsing together the URL and String arguments. 

The URL class contains many methods for accessing the various parts of the URL 

being represented. Some of the methods in the URL class include the following − 

Sr.No. Method & Description 

1 public String getPath() 

Returns the path of the URL. 

2 public String getQuery() 

Returns the query part of the URL. 

3 public String getAuthority() 

Returns the authority of the URL. 

4 public int getPort() 

Returns the port of the URL. 



5 public int getDefaultPort() 

Returns the default port for the protocol of the URL. 

6 public String getProtocol() 

Returns the protocol of the URL. 

7 public String getHost() 

Returns the host of the URL. 

8 public String getHost() 

Returns the host of the URL. 

9 public String getFile() 

Returns the filename of the URL. 

10 public String getRef() 

Returns the reference part of the URL. 

11 public URLConnection openConnection() throws IOException 

Opens a connection to the URL, allowing a client to communicate with the 

resource. 

Example 

The following URLDemo program demonstrates the various parts of a URL. A URL 

is entered on the command line, and the URLDemo program outputs each part of the 

given URL. 



 

// File Name : URLDemo.java 

import java.net.*; 

import java.io.*; 

 

public class URLDemo { 

 

   public static void main(String [] args) { 

      try { 

         URL url = new 

URL("https://www.amrood.com/index.htm?language=en#j2se"); 

          

         System.out.println("URL is " + url.toString()); 

         System.out.println("protocol is " + url.getProtocol()); 

         System.out.println("authority is " + url.getAuthority()); 

         System.out.println("file name is " + url.getFile()); 

         System.out.println("host is " + url.getHost()); 

         System.out.println("path is " + url.getPath()); 

         System.out.println("port is " + url.getPort()); 

         System.out.println("default port is " + url.getDefaultPort()); 

         System.out.println("query is " + url.getQuery()); 

         System.out.println("ref is " + url.getRef()); 

      } catch (IOException e) { 

         e.printStackTrace(); 

      } 

   } 

} 

A sample run of the this program will produce the following result − 

Output 

URL is https://www.amrood.com/index.htm?language=en#j2se 



protocol is http 

authority is www.amrood.com 

file name is /index.htm?language=en 

host is www.amrood.com 

path is /index.htm 

port is -1 

default port is 80 

query is language=en 

ref is j2se 

URLConnections Class Methods 

The openConnection() method returns a java.net.URLConnection, an abstract class 

whose subclasses represent the various types of URL connections. 

For example − 

• If you connect to a URL whose protocol is HTTP, the openConnection() 

method returns an HttpURLConnection object. 

• If you connect to a URL that represents a JAR file, the openConnection() 

method returns a JarURLConnection object, etc. 

The URLConnection class has many methods for setting or determining information 

about the connection, including the following − 

Sr.No. Method & Description 

1 Object getContent() 

Retrieves the contents of this URL connection. 

2 Object getContent(Class[] classes) 

Retrieves the contents of this URL connection. 



3 String getContentEncoding() 

Returns the value of the content-encoding header field. 

4 int getContentLength() 

Returns the value of the content-length header field. 

5 String getContentType() 

Returns the value of the content-type header field. 

6 int getLastModified() 

Returns the value of the last-modified header field. 

7 long getExpiration() 

Returns the value of the expired header field. 

8 long getIfModifiedSince() 

Returns the value of this object's ifModifiedSince field. 

9 public void setDoInput(boolean input) 

Passes in true to denote that the connection will be used for input. The 

default value is true because clients typically read from a 

URLConnection. 

10 public void setDoOutput(boolean output) 



Passes in true to denote that the connection will be used for output. 

The default value is false because many types of URLs do not support 

being written to. 

11 public InputStream getInputStream() throws IOException 

Returns the input stream of the URL connection for reading from the 

resource. 

12 public OutputStream getOutputStream() throws IOException 

Returns the output stream of the URL connection for writing to the 

resource. 

13 public URL getURL() 

Returns the URL that this URLConnection object is connected to. 

Example 

The following URLConnectionDemo program connects to a URL entered from the 

command line. 

If the URL represents an HTTP resource, the connection is cast to 

HttpURLConnection, and the data in the resource is read one line at a time. 

// File Name : URLConnDemo.java 

import java.net.*; 

import java.io.*; 

 

public class URLConnDemo { 

 

   public static void main(String [] args) { 

      try { 

         URL url = new URL("https://www.amrood.com"); 



         URLConnection urlConnection = url.openConnection(); 

         HttpURLConnection connection = null; 

         if(urlConnection instanceof HttpURLConnection) { 

            connection = (HttpURLConnection) urlConnection; 

         }else { 

            System.out.println("Please enter an HTTP URL."); 

            return; 

         } 

          

         BufferedReader in = new BufferedReader( 

            new InputStreamReader(connection.getInputStream())); 

         String urlString = ""; 

         String current; 

          

         while((current = in.readLine()) != null) { 

            urlString += current; 

         } 

         System.out.println(urlString); 

      } catch (IOException e) { 

         e.printStackTrace(); 

      } 

   } 

} 

A sample run of this program will produce the following result − 

Output 

$ java URLConnDemo 

 

.....a complete HTML content of home page of amrood.com..... 

 

Writing and Reading Data Via URL Connections 



The URL class of the java.net package represents a Uniform Resource Locator which 

is used to point a resource(file or, directory or a reference) in the world wide web. 

This class provides various constructors one of them accepts a String parameter and 

constructs an object of the URL class. 

The openStream() method of this class opens a connection to the URL represented by 

the current object and returns an InputStream object using which you can read data 

from the URL. 

Therefore, to read data from web page (using the URL class) − 

• Instantiate the java.net.URL class by passing the URL of the desired web 

page as a parameter to its constructor. 

• Invoke the openStream() method and retrieve the InputStream object. 

• Instantiate the Scanner class by passing the above retrieved InputStream 

object as a parameter. 

Example 

import java.io.IOException; 

import java.net.URL; 

import java.util.Scanner; 

public class ReadingWebPage { 

   public static void main(String args[]) throws IOException { 

      //Instantiating the URL class 

      URL url = new URL("http://www.something.com/"); 

      //Retrieving the contents of the specified page 

      Scanner sc = new Scanner(url.openStream()); 

      //Instantiating the StringBuffer class to hold the result 

      StringBuffer sb = new StringBuffer(); 



      while(sc.hasNext()) { 

         sb.append(sc.next()); 

         //System.out.println(sc.next()); 

      } 

      //Retrieving the String from the String Buffer object 

      String result = sb.toString(); 

      System.out.println(result); 

      //Removing the HTML tags 

      result = result.replaceAll("<[^>]*>", ""); 

      System.out.println("Contents of the web page: "+result); 

   } 

} 

Output 

<html><body><h1>Itworks!</h1></body></html> 

Contents of the web page: Itworks! 

RMI 

RMI stands for Remote Method Invocation. It is a mechanism that allows an object 

residing in one system (JVM) to access/invoke an object running on another JVM. 

RMI is used to build distributed applications; it provides remote communication 

between Java programs. It is provided in the package java. 

RMI stands for Remote Method Invocation. It is a mechanism that allows an object 

residing in one system (JVM) to access/invoke an object running on another JVM. 

RMI is used to build distributed applications; it provides remote communication 

between Java programs. It is provided in the package java.rmi. 



Architecture of an RMI Application 

In an RMI application, we write two programs, a server program (resides on the 

server) and a client program (resides on the client). 

• Inside the server program, a remote object is created and reference of that 

object is made available for the client (using the registry). 

• The client program requests the remote objects on the server and tries to 

invoke its methods. 

The following diagram shows the architecture of an RMI application. 

 

Let us now discuss the components of this architecture. 

• Transport Layer − This layer connects the client and the server. It 

manages the existing connection and also sets up new connections. 

• Stub − A stub is a representation (proxy) of the remote object at client. It 

resides in the client system; it acts as a gateway for the client program. 

• Skeleton − This is the object which resides on the server 

side. stub communicates with this skeleton to pass request to the remote 

object. 



• RRL(Remote Reference Layer) − It is the layer which manages the 

references made by the client to the remote object. 

Working of an RMI Application 

The following points summarize how an RMI application works − 

• When the client makes a call to the remote object, it is received by the 

stub which eventually passes this request to the RRL. 

• When the client-side RRL receives the request, it invokes a method 

called invoke() of the object remoteRef. It passes the request to the RRL 

on the server side. 

• The RRL on the server side passes the request to the Skeleton (proxy on 

the server) which finally invokes the required object on the server. 

• The result is passed all the way back to the client. 

Marshalling and Unmarshalling 

Whenever a client invokes a method that accepts parameters on a remote object, the 

parameters are bundled into a message before being sent over the network. These 

parameters may be of primitive type or objects. In case of primitive type, the 

parameters are put together and a header is attached to it. In case the parameters are 

objects, then they are serialized. This process is known as marshalling. 

At the server side, the packed parameters are unbundled and then the required 

method is invoked. This process is known as unmarshalling. 

RMI Registry 

RMI registry is a namespace on which all server objects are placed. Each time the 

server creates an object, it registers this object with the RMIregistry 

(using bind() or reBind() methods). These are registered using a unique name known 

as bind name. 



To invoke a remote object, the client needs a reference of that object. At that time, the 

client fetches the object from the registry using its bind name 

(using lookup() method). 

The following illustration explains the entire process − 

 

Goals of RMI 

Following are the goals of RMI − 

• To minimize the complexity of the application. 

• To preserve type safety. 

• Distributed garbage collection. 

• Minimize the difference between working with local and remote objects 

Implementation an RMI Server 

 RMI server program should implement the remote interface or extend the 

implementation class. Here, we should create a remote object and bind it to the RMI 

registry. Create a client class from where you want invoke the remote object. 



Developing the Server Program 

An RMI server program should implement the remote interface or extend the 

implementation class. Here, we should create a remote object and bind it to 

the RMIregistry. 

To develop a server program − 

• Create a client class from where you want invoke the remote object. 

• Create a remote object by instantiating the implementation class as 

shown below. 

• Export the remote object using the method exportObject() of the class 

named UnicastRemoteObject which belongs to the 

package java.rmi.server. 

• Get the RMI registry using the getRegistry() method of 

the LocateRegistry class which belongs to the package java.rmi.registry. 

• Bind the remote object created to the registry using the bind() method of 

the class named Registry. To this method, pass a string representing the 

bind name and the object exported, as parameters. 

Following is an example of an RMI server program. 

import java.rmi.registry.Registry;  

import java.rmi.registry.LocateRegistry;  

import java.rmi.RemoteException;  

import java.rmi.server.UnicastRemoteObject;  

 

public class Server extends ImplExample {  

   public Server() {}  

   public static void main(String args[]) {  

      try {  

         // Instantiating the implementation class  

         ImplExample obj = new ImplExample();  

     



         // Exporting the object of implementation class   

         // (here we are exporting the remote object to the stub)  

         Hello stub = (Hello) UnicastRemoteObject.exportObject(obj, 0);   

          

         // Binding the remote object (stub) in the registry  

         Registry registry = LocateRegistry.getRegistry();  

          

         registry.bind("Hello", stub);   

         System.err.println("Server ready");  

      } catch (Exception e) {  

         System.err.println("Server exception: " + e.toString());  

         e.printStackTrace();  

      }  

   }  

}  

Developing the Client Program 

Write a client program in it, fetch the remote object and invoke the required method 

using this object. 

To develop a client program − 

• Create a client class from where your intended to invoke the remote 

object. 

• Get the RMI registry using the getRegistry() method of 

the LocateRegistry class which belongs to the package java.rmi.registry. 

• Fetch the object from the registry using the method lookup() of the 

class Registry which belongs to the package java.rmi.registry. 

To this method, you need to pass a string value representing the bind 

name as a parameter. This will return you the remote object. 

• The lookup() returns an object of type remote, down cast it to the type 

Hello. 



• Finally invoke the required method using the obtained remote object. 

Following is an example of an RMI client program. 

import java.rmi.registry.LocateRegistry;  

import java.rmi.registry.Registry;   

 

public class Client {   

   private Client() {}   

   public static void main(String[] args) {   

      try {   

         // Getting the registry  

         Registry registry = LocateRegistry.getRegistry(null);  

     

         // Looking up the registry for the remote object  

         Hello stub = (Hello) registry.lookup("Hello");  

     

         // Calling the remote method using the obtained object  

         stub.printMsg();  

          

         // System.out.println("Remote method invoked");  

      } catch (Exception e) { 

         System.err.println("Client exception: " + e.toString());  

         e.printStackTrace();  

      }  

   }  

} 

Compiling the Application 

To compile the application − 

• Compile the Remote interface. 

• Compile the implementation class. 



• Compile the server program. 

• Compile the client program. 

Or, 

Open the folder where you have stored all the programs and compile all the Java files 

as shown below. 

Javac *.java 

 

Executing the Application 

Step 1 − Start the rmi registry using the following command. 

start rmiregistry 

 

 

RMI  Application 

To write an RMI Java application, you would have to follow the steps given below − 

• Define the remote interface 



• Develop the implementation class (remote object) 

• Develop the server program 

• Develop the client program 

• Compile the application 

• Execute the application 

Defining the Remote Interface 

A remote interface provides the description of all the methods of a particular remote 

object. The client communicates with this remote interface. 

To create a remote interface − 

• Create an interface that extends the predefined interface Remote which 

belongs to the package. 

• Declare all the business methods that can be invoked by the client in this 

interface. 

• Since there is a chance of network issues during remote calls, an 

exception named RemoteException may occur; throw it. 

Following is an example of a remote interface. Here we have defined an interface with 

the name Hello and it has a method called printMsg(). 

import java.rmi.Remote;  

import java.rmi.RemoteException;   

 

// Creating Remote interface for our application  

public interface Hello extends Remote {   

   void printMsg() throws RemoteException;   

}  

Developing the Implementation Class (Remote Object) 



We need to implement the remote interface created in the earlier step. (We can write 

an implementation class separately or we can directly make the server program 

implement this interface.) 

To develop an implementation class − 

• Implement the interface created in the previous step. 

• Provide implementation to all the abstract methods of the remote 

interface. 

Following is an implementation class. Here, we have created a class 

named ImplExample and implemented the interface Hello created in the previous 

step and provided body for this method which prints a message 

 

// Implementing the remote interface  

public class ImplExample implements Hello {   

    

   // Implementing the interface method  

   public void printMsg() {   

      System.out.println("This is an example RMI program");   

   }   

}  

 


